摘要
电网数据具有海量、高维的特点,现有的短期电力负荷预测模型无法提取用户的用电习惯。提出一种基于负荷聚类的全网短期负荷预测模型,首先采用自组织映射网络对全网负荷进行聚类,将不同特性的用户负荷曲线作为子网;然后引入遗传算法对Elman神经网络的参数进行寻优,得到针对不同子网负荷特性的差异化预测网络;最后基于负荷综合稳定度得到全网负荷预测结果。将该集成模型用于某市电网进行算例仿真,预测结果表明,所提方法比传统预测方法的准确率更高,同时适用于部分子网数据缺失而需要得到全网结果的情况。
-
单位自动化学院; 武汉大学