摘要
并联机器人是一种多支链、多关节、强耦合非线性系统,具有高速、高刚度和大负载等明显优势而被广泛应用到工业领域。然而,随着关节数量的增加导致该类机器人运动学解耦和高精度平稳控制的难度较大。为实现大范围平动3-RRRU并联机器人自动化轨迹跟踪和控制的平稳性,针对运动学解耦和速度自适应规划方法展开了系统、深入地研究。首先,应用DH法建立了机器人运动学模型,基于结构约束条件完成运动学解耦计算,并在S型控制策略中加入速度自适应修正机制,依据不同轨迹可自动计算并修正最大速度参数,实现自适应优化;其次,采用激光跟踪仪对机器人轨迹进行动态跟踪,对比分析了S型速度和梯型速度控制策略下的跟踪精度,梯型速度规划下其最大误差高达4.513 mm,是S型控制策略的3倍,且位置误差曲线出现多个尖峰值,说明因速度突变导致运动平稳性较差;最后,测试S型速度规划下采用自适应修正机制前、后机器人的平稳性以及轨迹跟踪精度。实验结果表明:当规划路径难以实现机器人加速到原预设最大速度时,在轨迹末端存在较大的惯性速度,产生位置尖峰误差为2.676 mm,是修正后最大误差的2.4倍,且伴随着明显的冲击效应。引入自适应修正机制后圆轨迹的起点和终点位置误差分别为0.722 mm和0.382 mm,二者相对位置偏差仅为0.34 mm,且末端定位误差相比修正前降低了一个数量级,有效解决了机器人存在惯性冲击效应的难题,大幅提高了机器人整体轨迹跟踪的精度和控制的平稳性。
- 单位