摘要
布尔函数在密码学中有着重要应用。Bent函数作为非线性度最大的布尔函数一直是对称密码学的热点研究对象。从频谱的角度来看,bent函数在Walsh-Hadamard变换下具有均匀频谱。Negabent函数是bent函数的推广,它在nega-Hadamard变换下具有均匀频谱。广义negabent函数是指在广义nega-Hadamard变换下具有均匀频谱的函数。Bent函数自1976年被提出以来,人们对其进行了广泛和深入的研究。然而,对于negabent函数和广义negabent函数的相关研究则较少。文中分析了广义negabent函数和广义bent-negabent函数的性质,并构造出一系列广义negabent函数、广义bent-negabent函数和广义semibent-negabent函数。首先,通过分析广义布尔函数的nega-互相关函数与广义nega-Hadamard变换之间的关系,提出一个广义negabent函数的判据。基于该判据,构造了一类广义negabent函数。其次,利用直和构造给出了两类形如f(x)=c1f1(x((1)))+c2f2(x((2)))+…+crfr(x((r)))的广义negabent函数。最后,利用直和构造得到了几类Z8上的广义bent-negabent函数和广义semibent-negabent函数。文中提出了一些广义negabent函数构造的新方法,丰富了广义negabent函数的结果。
- 单位