摘要

软件定义网络(SDN)是一种新兴网络架构,通过将转发层和控制层分离,实现网络的集中管控。控制器作为SDN网络的核心,容易成为被攻击的目标,分布式拒绝服务(DDo S)攻击是SDN网络面临的最具威胁的攻击之一。针对这一问题,本文提出一种基于机器学习的DDo S攻击检测模型。首先基于信息熵监控交换机端口流量来判断是否存在异常流量,检测到异常后提取流量特征,使用SVM+K-Means的复合算法检测DDo S攻击,最后控制器下发丢弃流表处理攻击流量。实验结果表明,本文算法在误报率、检测率和准确率指标上均优于SVM算法和K-Means算法。