摘要
选取磷化液温度、磷化液游离酸度和磷化时间作为输入参数,耐点蚀时间作为输出参数,引入广义回归神经网络(GRNN)建立磷化膜耐蚀性预测模型,并分别采用果蝇优化算法(FOA)、粒子群优化算法(PSO)对平滑因子寻优进而优化预测模型。使用18组训练样本对优化后模型进行训练,9组检验样本用于优化后模型的预测准确度评价。结果表明:PSO-GRNN模型的预测值非常接近真实值,预测相对误差在[0.001,1.778]区间内,均方根误差最低、为0.682。与常规BPNN模型和FOA-GRNN模型相比,PSO-GRNN模型的预测准确度较高,对磷化膜耐蚀性预测效果良好。
-
单位东北大学; 河北建材职业技术学院