摘要

从计算方法角度对算法进行改进,引入高斯核函数,改良归一化条件并对迭代过程加以简化,从而改进了模糊核C均值算法。算法性能速度较经典的聚类算法有了较大改进,聚类结果更为快速稳定,并可在多种数据结构条件下进行有效的聚类,计算时间显著减少,克服了传统的模糊核C-均值算法计算时间较长,在样本集不理想的情况下可能导致结果不好等不足。实验结果证实了该改进算法有效性。