摘要
针对滚动轴承故障诊断问题,在分析传统的误差反向传播(BP)算法、莱文伯格马夸特(LM)算法等经典人工神经网络训练方法的基础上,提出了差分进化训练算法。在选取差分进化策略时,取消了变异个体选取限制,从而加快了算法收敛速度。采用不同故障部位和程度的滚动轴承故障实验数据构成样本集合,并分别运用最速下降法、LM算法和差分进化算法对相同结构的人工神经网络进行训练,对比分析其故障分类性能。实验结果表明,差分进化算法能较好地识别滚动轴承故障,准确度较高,总体上与LM算法相当,且其在多次实验中故障识别率的最大值与最小值差别较小,具有较好的稳定性,同时该算法避免了LM算法存在的"过学习"问题。
-
单位中国人民解放军陆军工程大学