摘要
二维形状识别是物体识别中的一个基本问题,被广泛地应用于商标检索、指纹识别、物体定位、图像检索等多个领域。其中,基于生物信息学的二维形状识别是近期一个新的研究方向,基本思想是把二维形状的轮廓转化为生物信息序列,借助标准的生物信息序列分析工具来进行二维形状的匹配和识别。不过,利用轮廓进行信息序列编码存在编码冗余和编码准确性不高的问题,本文提出了一种新型的结合形状轮廓和骨架的序列编码方法。该方法利用骨架表示形状的细长分支,减少编码的冗余;并分别对轮廓和骨架进行不同类型的编码,具备编码简洁、后续匹配准确性高等优点。最后,本文在三个公开数据集上进行大量的形状识别实验,并与多种通用形状识别方法进行了比较。实验表明,本文方法在多个实验中均取得了较高的识别准确率,相比基本的形状特征描述方法,准确率提高了近5%。
- 单位