摘要
文本分类一直是自然语言处理任务的研究重点与热点,且被广泛应用到诸多实践领域。首先,该文针对文本分类过程中缺乏层次结构特征的问题,对NMF-SVM分类方法进行优化,利用优化后的分类标签构建树形层次模型,从特征树中提取层次特征;其次,针对关键词与非关键词对分类结果影响程度不同的问题,提出SEAN注意力机制,通过对时间、地点、人物和事件四要素的提取,得到不同词之间的注意力;最后,针对句子间亲和度不同的问题,考虑不同句子的四要素词和语义层面的影响提出句间亲和度计算模型。该文算法适用于四要素突出的数据集,如新闻、小说、阅读理解、微博,在新闻类数据集上与同类别的深度学习文本分类模型以及包含注意力机制的混合模型进行了对比,实验结果表明,该算法在分类效果上具有一定优势。
- 单位