摘要

Diamond-like carbon (DLC) films with different thickness (11.26~230.93 nm) were prepared on polyether ether ketone (PEEK) via direct current magnetron sputtering in the time ranging from 2 to 40 min. The effect of deposition time on the structure and composition of surface and interface, as well as the surface hydrophobic, the mechanical and optical transmittance properties of composite films PEEK/DLC were systematically studied. Results show that with the increase of deposition time the film thickness will be enhanced linearly with an average deposition rate of 5.71 nm/min. The density of C atoms and the interface interlocking structure gradually increase, while the interface adhesion decreases with time. By fitting peaks of Raman and XPS spectra, it is found that when the time ≤15 min, the ID/IG value by data fitting remains at 0.23~0.25 and the ratio of sp2/sp3 is low (0.58~0.74) due to the influence of substrate. When the time >15 min, as the substrate effect becomes weak the ID/IG value has a great increase (to 0.81), and the sp2/sp3 value turns to be high (0.96~1.12). Prolonging the time will lead to the rise of substrate temperature inducing the ascending of sp2/sp3 ratio. While O content at the surface presents a low-flat trend and part of C=O bonds transformed into C-O bonds. The hardness, elastic modulus, the anti-ultraviolet and infrared barrier properties of PEEK/DLC composite films will rise over time, while the surface roughness and hydrophobicity both have a trend from high to low, reaching a maximum surface roughness and water contact angle of 495 nm and 108.29° at 32 min, respectively.

全文