稀疏正则化方法在参数重构中起到了越来越重要的作用.与传统的正则化方法相比,稀疏正则化方法能较好地重构稀疏变量.由于稀疏正则化的不可微性,需要对已有的经典算法进行改进.本文构建同伦摄动稀疏正则化方法克服标准稀疏正则化的不可微性,并将该方法应用到基于布莱克一斯科尔斯期权定价模型重构隐含波动率和基于托达罗模型重构政策参数.数值实验表明,所提出的方法是收敛和稳定的.