摘要

随着武器装备智能化发展的速度加快,传统武器装备的训练方法已经无法满足大规模现代战争的训练需求。在近十年中深度强化学习等人工智能方法在棋类以及电子竞技游戏中取得了极大突破,证明了人工智能方法在面对大搜索空间博弈问题的优势,能够有效解决军事对抗问题中的形势预判和临机调整问题。基于此背景,依托海军舰艇对空方面作战,开展了深度强化学习的方法研究。首先通过并行场景建模技术以及空中威胁决策行为建模技术实现深度学习模型的构建,之后通过单机突防场景的对抗迭代学习,得到收敛的突防策略。验证了深度强化学习方法在空中威胁行为构建场景的可行性,为后续深入开展编队联合防空训练场景构建提供支撑。

  • 单位
    北京电子工程总体研究所