摘要

土壤水分是影响水文、生态和气候等环境过程的重要参数,而微波遥感是农田地表土壤水分测量的重要手段之一。针对微波遥感反演农田地表土壤水分受植被覆盖影响较大的问题,该文基于Sentinel-1和Sentinel-2多源遥感数据,利用Oh模型、支持向量回归(support vector regression,SVR)和广义神经网络(generalized regression neural Network,GRNN)模型对土壤水分进行定量反演,以减小植被影响,提高反演精度。结果表明:通过水云模型去除植被影响后的Oh模型反演精度有所提高。加入不同植被指数的SVR和GRNN模型的反演效果总体优于Oh模型,基于SVR模型的多特征参数组合(双极化雷达后向散射系数、海拔高度、局部入射角、修改型土壤调整植被指数)反演效果最优,其测试集相关系数和均方根误差分别达到了0.903和0.015 cm3/cm3,为利用多源遥感数据反演农田地表土壤水分提供了参考。