摘要
虚假新闻检测的方法有很多种,单一的方法通常只关注新闻内容、社交上下文或外部事实等信息;而联合检测方法则通过整合多种模式信息以达到检测目的。Pref-FEND即为一种整合新闻内容与外部事实的联合检测方法,它从新闻内容和外部事实中提取3种词语表示,利用动态图卷积网络获得词节点之间的关系。但在如何让两种模式更加专注于自己的偏好部分方面仍存在不足。因此,对Pref-FEND模型进行了改进,利用语义挖掘扩充新闻中的风格词,利用实体链接扩充新闻中的实体词,共得到5种词语作为图网络的节点表示,从而更有效的建模图神经网络的节点表征;同时,引入深度异构图卷积网络(HDGCN)进行偏好学习,它的深度策略和多层注意力机制可以让两种模型更加专注于自身需要的偏好感知并减少冗余信息。实验结果表明,在公开数据集Weibo和Twitter上,与当前主流的基于内容的单一模型LDAVAE相比,改进后的框架F1值分别高出2.8%和1.9%;与基于事实的单一模型GET相比,F1值分别高出2.1%和1.8%;同时,在LDAVAE+GET联合检测情况下,比Pref-FEND的 F1值分别高出1.1%和1.3%。实验结果验证了所改进模型的有效性。
- 单位