摘要

基于传统优化模型展开的深度网络由于集成了深度学习与传统优化方法的优点,具有良好的可解释性,在当前图像处理与计算机视觉领域得到广泛关注.提出了一种级联模型展开与残差学习的图像压缩感知重构深度网络框架,以实现重构图像质量的进一步改善.第一级的基于模型展开的深度网络根据输入的压缩测量值得到初始的重构图像,第二级的深度残差网络对初始重构图像进行去噪处理,最终得到高质量的重构结果.该两级级联网络的训练分别独立完成,训练过程简单易实现,将ADMM-Net与Res Net级联实现对磁共振图像重构,将ISTA-Net+与Res Net级联实现对自然图像重构.大量实验结果比较验证了所提出方法的有效性.