摘要

随着设备的迭代,网络流量呈现指数级别的增长,针对各种应用的攻击行为越来越多,从流量层面识别并对这些攻击流量进行分类具有重要意义。同时,随着物联网设备的激增,针对这些设备的攻击行为也逐渐增多,造成的危害也越来越大。物联网入侵检测方法可以从这些海量的流量中识别出攻击流量,从流量层面保护物联网设备,阻断攻击行为。针对现阶段各类攻击流量检测准确率低以及样本不平衡问题,提出了基于重采样随机森林(RF,random forest)的入侵检测模型——Resample-RF,共包含3种具体算法:最优样本选择算法、基于信息熵的特征归并算法、多分类贪心转化算法。在物联网环境中,针对不平衡样本问题,提出最优样本选择算法,增加小样本所占权重,从而提高模型准确率;针对随机森林特征分裂效率不高的问题,提出基于信息熵的特征归并算法,提高模型运行效率;针对随机森林多分类精度不高的问题,提出多分类贪心转化算法,进一步提高准确率。在两个公开数据集上进行模型的检验,在Io T-23数据集上F1达到0.99,在Kaggle数据集上F1达到1.0,均具有显著效果。从实验结果中可知,提出的模型具有非常好的效果,能从海量流量中有效识别出攻击流量,较好地防范黑客对应用的攻击,保护物联网设备,从而保护用户。