摘要
针对三维激光扫描仪获取到的点云数据存在的多尺度混合噪声将严重影响后续的三维模型重建的问题,提出了一种基于改进的密度峰值聚类算法(DPC)和特征分区的点云去噪算法。首先通过改进的DPC算法去除远离点云主体的大尺度噪声;然后利用主成元分析法(PCA)和曲面变分获取点云法矢及曲率信息,同时采用邻域传播法调整法矢方向并根据曲率对点云进行划分,对特征区域点云与平坦区域点云分别采取自适应双边滤波和正交整体最小二乘平面拟合的方法进行光顺去噪。实验结果表明:在包含混合噪声的bunny与block模型下,利用该算法去噪后点云数据最大误差分别为0.235 mm和0.157 mm,平均误差分别为0.029 mm和0.009 mm,均能取得较好的去噪效果,且降低了去噪参数设置的复杂性。
- 单位