摘要

为了发展非线性分数阶偏微分方程的求解技巧并丰富其解的形式,把若干非线性分数阶偏微分方程进行分数阶复变换,转化为整数阶常微分方程或偏微分方程。通过因式分解法求得分数阶Cahn-Allen方程的孤立波解;利用推广的(F/G)-展开法求解了(2+1)-维分数阶asymmetric-Nizhnik-Novikov-Veselov方程的完全分离变量形式的解,并得到了多Dromion孤子的结构激发;由重正规化方法分别求出在强、弱非线性下的分数阶Klein-Gordon方程的一级解析近似解,再采用线化和校正方法在无须特殊考虑非线性强度大小的情况下直接求得了该方程的一级近似解,并对两种近似方法所得结果进行比较。

全文