摘要

原子核低激发谱对深入理解原子核结构具有重要作用。采用多任务反向传播(Back Propagation,BP)的神经网络方法系统研究了原子核2 1+和4 1+的激发能量。除了质子数和中子数外,通过在网络输入层增加一个有关原子核集体性的物理量,BP神经网络在0.1 MeV到数MeV的能量范围内很好地拟合了原子核的低激发能。相比五维集体哈密顿量(Five-Dimensional Collective Hamiltonian,5DCH)方法,BP神经网络更好地再现了原子核低激发能的同位素趋势,以及由壳效应导致的幻数原子核低激发能的突然增大,并且将2 1+和41+激发能的预言精度分别提高了约80%和75%,该预言精度与单任务神经网络基本一致,但是改进了对轻核区与缺中子核区低激发谱的学习能力,这说明多任务神经网络可以实现多种激发能量的统一精确计算。