利用经典算子半群理论中的研究方法,基于双连续n阶α次积分C半群的生成定理,讨论了指数有界双连续n阶α次积分C半群的逼近定理。{T(t)}t≥0,{Tn(t)}t≥0分别是由A、An次生成的指数有界双连续n阶α次积分C半群,在一定条件下,可以得到Ra(λ,An) x→Ra(λ,A) x与Tn(t)x→T (t)x等价。研究结果推广了n阶α次积分C半群相关的逼近定理。