摘要
针对目标检测中小目标物体漏检率及误检率高等问题,提出了一种基于Yolov3-Tiny算法的改进模型。改进k-means聚类方法,增加3×3和1×1的卷积池化层,将第9层卷积输出上采样,并与第8层卷积得到的特征图进行连接,得到新的输出:52×52卷积层,形成新的特征金字塔。基于卡尔曼滤波算法实现目标跟踪,提出融合跟踪算法的检测网络,使用匈牙利匹配算法对检测边缘框与跟踪边缘框进行最优匹配,利用跟踪结果修正检测结果,提高了检测速度,同时提升了检测能力。在ROS、Gazebo和自动驾驶仪软件PX4的综合仿真环境下对所提算法进行了对比试验。试验结果表明:改进算法平均检测速度降低了15.6%,mAP提高了6.5%。融合跟踪算法后的网络平均检测速度提高了34.2%,mAP提高了8.6%。融合跟踪算法后的网络能够满足系统实时性和准确性的要求。
- 单位