摘要
由于存在严重的模型过拟合问题,传统的城市综合体月度用电量单步预测方法往往不能提供准确的预测结果。提出一种基于多层分解-累加原理的城市综合体月度用电量预测方法。该方法首先将城市综合体内部负荷根据其负荷特性细分为3类;然后,针对每一类型的负荷搜集其历史小时用电量数据,并根据数据的星期标签再次分解,以提高多步预测模型的预测精度;接着,使用改进的经验模态分解(improved empirical mode decomposition, IEMD),将用电量序列中不同尺度的波动和趋势特性分离开来,并利用极端梯度提升(extreme gradient boosting, XGBoost)算法对分解后的各分量分别建立对应的多步预测模型;最后将预测结果逐层累加得到月度用电量预测结果。研究结果表明,文章提出的方法能够有效地捕捉城市综合体用电量变化规律,其预测误差精度比传统方法提升了18.2%~34.9%。
- 单位