摘要

传统的单目姿态估计算法采用卷积网络在图像中定位若干关键点,再基于2D-3D匹配技术估计目标的姿态,但卫星上的关键点分布较分散,卷积网络由于其受限的感受野导致关键点的定位精度低,影响后续姿态估计的精度。此外传统流程需要人工标注关键点位置和目标的掩膜,标注成本高。为了解决传统方法感受野受限问题,在卷积网络中引入自注意力机制,赋予其全局建模能力,提高了关键点的定位精度。为了改善传统方法需要大量人工标注的问题,通过空间雕刻,重构了目标的点云,再将点云重投影回像素平面,自动化获取所需标签,省略了人工标注过程,提高了算法实用性。实验结果表明:所提算法在SPEED数据集上进行验证,关键点定位精度为92%,姿态平移误差为0.236%,姿态旋转误差为9.86×10-3弧度,在简化算法复杂度的同时提升了精度。可以有效应用于航天器之间的相对姿态估计。

全文