摘要

为了减少二氧化碳引发的环境灾害,辅助大气碳库向“灰碳”性质转化,仿生碳转化研究主要形成了两条路线。一是基于光合作用机理,人工完成水光解、碳激活、羧化反应、取代反应等步骤。其中,水光解是关键一步,仿生碳转化必须跨越这道难关,设法使共振能量沿H—O键的法向施加电磁作用,超过其成键临界值导致共价键断裂,释放活性H、O、OH。与其伴随的碳激活便完成后续碳转化步骤,促进大气碳库向生物碳库转化。二是基于生物矿化机理,人工完成碳激活、羰化反应、螯合反应、结晶成盐、矿化生长等步骤。由于动植物体借助1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)或碳酸酐酶(CA)来激活CO2·H2O,反应条件比较温和,旺盛的多糖氧化、充足的阳光照射等能量来源都可以达到二氧化碳的活化能位,进而完成后续矿化步骤,促进大气碳库向有益碳存转化。仿生矿化需要培养顽强的活化酶,能够在自然水体里长期存活、繁殖、扩散,现有活化酶的矿化作用仍需要验证评估。在仿生碳转化研究中,只要是在温和条件下推进碳转化反应的各个步骤,都具有较高的研究利用价值。

  • 单位
    浙江农业商贸职业学院